Positive Solutions for Third-Order Boundary-Value Problems with the Integral Boundary Conditions and Dependence on the First-Order Derivatives

نویسندگان

  • Yanping Guo
  • Fei Yang
چکیده

Third-order boundary-value problems for differential equation play a very important role in a variety of different areas of applied mathematics and physics. Recently, third-order boundary-value problems have been many scholars’ research object. For example, heat conduction, chemical engineering, underground water flow, thermoelasticity, and plasma physics can produce boundary-value problems with integral boundary conditions [1–3]. For more information about the general theory of integral equations and their relation with boundary-value problems, we refer readers to the books of Corduneanu [4] and Agarwal and O’Regan [5]. Moreover, boundary-value problems with integral boundary conditions constitute a very interesting and important class of problems. They include two, three, multipoint, and nonlocal boundary-value problems as special cases. Such kind of BVPs in Banach space has been studied by some researchers [6–8]. By the fixed point index theory in cones [9], Zhang et al. [10] investigated the multiplicity of positive solutions for a class of nonlinear boundary-value problems of fourthorder differential equations with integral boundary conditions in ordered Banach spaces. Feng et al. [11] investigated the existence and multiplicity of positive solutions for a class of nonlinear boundary-value problems of second-order differential equations with integral boundary conditions in ordered Banach spaces. Guo et al. [12] investigated the existence of positive solutions for the third-order boundary-value problems with integral boundary conditions and dependence on the second derivatives. In [13], by using the fixed point theorem of cone expansion and compression of norm type, Zhang and Ge proved the existence and multiplicity of symmetric positive solutions for the fourth-order boundaryvalue problems with integral boundary conditions. By using Krasnoselskii’s fixed point theorem, Wang et al. [14] investigated the existence and nonexistence of positive solutions for a class of fourth-order nonlinear differential equation with integral boundary conditions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order multi-point fractional boundary value problems with integral boundary conditions

In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u...

متن کامل

Existence and nonexistence of positive solution for sixth-order boundary value problems

‎In this paper‎, ‎we formulate the sixth-order boundary value problem as Fredholm integral equation by finding Green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem‎. ‎Also nonexistence results are obtained‎. ‎An example is given to illustrate the results of paper‎.

متن کامل

On two classes of third order boundary value problems with finite spectrum

‎The spectral analysis of two classes of third order boundary value problems is investigated‎. ‎For every positive integer $m$ we construct two classes of regular third order boundary value problems with at most $2m+1$‎ ‎eigenvalues‎, ‎counting multiplicity‎. ‎These kinds of finite spectrum results are previously known only for even order boundary value problems‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013